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Fluctuations in nonlinear Markovian systems are studied by the Langevin 
equation method using system-size expansion. Langevin equations with 
different random sources are constructed for the description of fluctuations 
to varying degrees of accuracy in inverse powers of the system size ~. 
Evolution equations for the deterministic path, deviation of the mean from 
the deterministic path, and the variance are obtained in a nonstationary 
state in the lowest order of e. The power spectral density for fluctuations 
about a stable equilibrium is calculated correct to order ~2 and is compared 
to the exact expression for the Alkemade diode. The relaxation frequency 
for the decay of correlations in a critical equilibrium and the scaling law for 
the anomalous fluctuations are determined and compared to those obtained 
by Kubo et al. 

KEY W O R D S :  Fluctuations far from equi l ibr ium; Markovian processes; 
Langevin equation ; Alkemade diode ; system-size expansion ; relaxation of 
f luctuations in critical states ; nonlinear reactor noise. 

1. I N T R O D U C T I O N  

In  this paper we study the fluctuations of macrovariables  in  nonl inear  macro-  
scopic systems with the Langevin  equat ion method.  A macrovariable  is 
defined as an  extensive quan t i ty  characterizing, along with other similar 
quantit ies,  a macrostate  of the macroscopic system consist ing of a large 
number  of interact ing or nonin te rac t ing  elementary subsystems. The number  
of neutrons  in a nuclear  reactor, the total  magnet iza t ion  in a ferromagnet,  
and  the popu la t ion  of a given kind in a microbial  communi ty  are examples 
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of macrovariables in physical and nonphysical systems. The characteristic 
feature of such variables is that they are a superposition of a large number of 
microscopic quantities, and they display fluctuations about their statistical 
average when considered as a function of time. These fluctuations are regarded 
as a random process. The macroscopic system may be in thermal equilibrium, 
or just in a steady state, or even in a nonstationary state. In any case, one is 
interested in determining the joint probability distribution function describing 
the statistics of the fluctuations of macrovariables in the system as a function 
of time. In some instances one is satisfied only with the calculation of two- 
time correlations of pairs of dynamical variables when the complete statistical 
problem is insoluble. 

In the macroscopic theory of fluctuations one usually assumes that the 
fluctuations of the macrovariables constitute a Markovian random process, 
and starts with the master equation describing such processes in terms of 
transition probabilities per unit time. Van Kampen (1~ showed, using the 
Kramers-Moyal expansion of the master equation in powers of e = 1/~, 
where f~ is the size of the system, which is assumed to be uniform, that the 
master equation reduces in the lowest order in ~ to a linear Fokker-Planck 
equation with time-dependent coefficients, and the probability distribution of 
the macrovariables about the most probable path is Gaussian. More speci- 
fically, he concluded that it is inconsistent to use the nonlinear Fokker-Planck 
equation in nonlinear systems without including at the same time higher 
derivatives of the distribution function than the second. More recently Kubo 
et al. C2~ obtained time evolution equations for the most probable path (or 
deterministic motion), variance, and deviation of the mean from the deter- 
ministic path by first proving conservation of the extensive property of the 
distribution function P(X,  t) of a macrovariable in time and then using an 
expansion of In P(X,  t) again in powers of e. They illustrated the application 
of the evolution equations to the Weiss-Ising model and discussed some 
aspects of anomalous fluctuations about a marginal and critical equilibrium. 
Their approach also is applicable to uniform systems only. Mori (a~ proposed 
a scale transformation of a nonequilibrium macroscopic state to obtain a 
kinetic equation for the evolution and fluctuations of the macrovariables in 
nonuniform systems. Haken (4~ reviewed techniques for investigating coopera- 
tive phenomena in physical systems far from equilibrium and in nonphysical 
systems. Recently, Keizer, (~> in a series of papers, has developed a purely 
phenomenological theory of fluctuations in nonlinear macroscopic systems 
in terms of three postulates. 

The generally accepted idea of the Langevin equation method which we 
use in this paper is that fluctuations of a macrovariable can be taken into 
account by simply adding a random source (Langevin assumption) to the 
macroscopic rate equation, which is usually known phenomenologically. 
Although the physical meaning of this source is often obscure, one assumes 
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it to be a white noise process with zero mean obeying the causality condition. 
In stationary linear systems, characterized by a linear macroscopic rate 
equation, the application of Langevin technique is straightforward. However, 
in nonlinear systems the noise source is generally nonstationary and its 
spectral density is dependent on the state of the system, so that the application 
of the Langevin technique to such systems ceases to be straightforward, van 
Kampen (5~ has elucidated the difficulties in the application of Langevin 
method to nonlinear macroscopic systems from the point of view of system- 
size expansion. Since many recent treatments of nonlinear processes use 
the Langevin equation method, we make an attempt in this paper to investi- 
gate its foundation and validity for studying fluctuations in nonlinear sys- 
tems. We restrict ourselves to Markov processes and develop, by means of 
system-size expansion, the stochastic equations describing the fluctuations to 
varying degrees of accuracy in powers of e. These equations contain different 
random sources, and constitute the Langevin equations for a nonlinear 
system. In the description to lowest order in e the theory reproduces evolution 
equations for the deterministic path, variance, deviation of the mean from 
the deterministic path, the correlation function, scaling rules for anomalous 
fluctuations, and the relaxation frequency of their correlation function in a 
critical equilibrium, as obtained by Kubo et  aL ~2~ The next higher order 
description of fluctuations enables one to calculate the power spectral density 
in stable equilibrium up to order ~2. When applied to Alkemade's diode (6~ as a 
nonlinear model system, the latter reproduces the power spectral density 
obtained by van Kampen (7,8~ by expanding the exact spectrum in powers of 
and retaining the first two terms. On the basis of these results we conclude 
that the Langevin equation method is sound and indeed powerful to study 
fluctuations in nonlinear systems. 

In Section 2, we present the moment equations of a Markov process, 
which are later used to develop the stochastic equations. In Section 3 we 
discuss the foundation of the Langevin equation method as an alternative 
approach to the study of fluctuations in nonlinear systems, and obtain the 
properties of the Langevin source appearing in the nonlinear macroscopic 
equation. In this section in particular we follow Lax (9~ very closely. In Section 
4 we use van Kampen's (1~ system-size expansion to obtain the evolution and 
stochastic equations in increasing orders of e. In Section 5 we study fluctua- 
tions and the evolution of the mean using the lowest order Langevin descrip- 
tion. Section 6 is devoted to the study of fluctuations about equilibrium 
using the next higher order Langevin description. The application of the 
general results to nonlinear model systems, such as Alkemade's diode, 
the Weiss-Ising model, and nuclear reactors, is presented in Section 7. 
Finally, in Section 8 we discuss scaling of fluctuations and time in the 
case of a critical equilibrium. The conclusions and discussions appear in 
Section 9. 
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2. M O M E N T  E Q U A T I O N S  

Let X( t )  be a macrovariable in a uniform system of size ~,  and assume 
that its fluctuations are described by a Markov process with the master 
equation 

~P(X,  t)  
= y dr [ W ( X  - r, r, t ) P ( X  - r, t)  - W ( X ,  r, t )P(X,  t)] (1) 

at 

where P ( X ,  t )  is the probability density at time t and W(X, r, t) is the 
transition probability per unit time at t from X to X + r with a jump r. We 
assume that W obeys 

W(X,  r, t) = ~co(x, r, t) (2) 

where x = X / ~  is the intensive variable and co(x, r, t) does not depend on 
explicitly. The master equation (1) is written in terms of x and co as 

bP(x,  t) f dr [co(x - ,r, r, t )P(x  - er, t) - co(x, r, t )P(x,  t)] (3) E 8------7--= 

where E = f~-i and P(x,  t) = f~P(X, t). The moments of the transition 
probability are defined by 

c.(x, t) -~ f dr r"co(x, r, t)  (4) 

Clearly the e~(x, t) also do not depend on E explicitly. In a time-invariant 
system the transition probability co and, hence, e~ are independent of time. 

The moments of x(t) are obtained from (3) as 

d(x ( t ) ) /d t  = (cl[x(t),  t ])  (5) 

d(x2( t ) ) /d t  = 2(e~[x(t), t]x(t))  + ,(c2[x(t), t]) (6) 

d<xS(t))/dt = 3(cz[x(t), t]xZ(t)) + 3,(c2[x(t), t]x(t))  

+ ,2<c3[x(t), t]) (7) 

where we define 

f dx cj(x, t)xnP(x, t) (8) (cj[x(t), t ]xn( t ) ) 

The transition probability P(x,  tlx' ,  t') (t > t') of the processes satisfies 
(3), as a function of t, with the initial condition P(x,  t l x ' ,  t )  = ~ (x  - x ' ) .  

The Markov property implies 

P, (x l ,  tl; x~, t2 ;... ; x , ,  tO 

= P (x l ,  t~)P(x2, t~lxl, q) ... P(x., t.lx.-1, t .-O 
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where tn > t,_ ~ > ... > tl and P ,  is the joint probability density at q ,  t2,..., t~, 
Using/ '2,  one defines the correlation function of the process for t > t '  as 

(x(t)x(t ')) = f dx' x'e(x', t') f dx xP(x, tlx', t') (9) 

Differentiating (9) with respect to t and using the master equation, one obtains 

e(x(t)x(t'))/et = (c~[x(t), t]x(t')) (10) 

where 

(cl[x(t), tlx(t')) = f dx f dx' x'cl(x, t)P2(x', t ' ;x ,  t) 

The derivation of (10) shows that it can be generalized as 

(~/~t)(x(t)f[x(t')]) = (cl[x(t), t ]f[x(t')]), 

where f (x)  is an arbitrary function. In particular, we have 

(8/8t)(x(t)cl[x(t'), t ' ])  = (cl[x(t), t]cl[x(t'), t ']),  

which will be needed later. 

t > t' (11) 

t > t' (12) 

Higher order two-time correlation functions can be obtained starting 
from (9). For example, one finds 

(~/~t)(x2(t)x(t')) = 2(c~[x(t), t]x(t)x(t')) 

+ ,(c2[x(t), t]x(t')), t > t' (13) 

which will also be needed later. 

In the case of a multivariable description of the macroscopic system, 
x(t) is replaced by a vector x(t) = col[xl(t),..., x,(t)] in the master equation 
(3). The components of x denote different intensive quantities. The moment 
equations become 

d(x(t))/dt = (c~[x(t), t ] )  (14) 

d(x(t)f~(t))/dt = (c~[x(t), t]~(t)) + (x(t)~l[x(t), t ] )  

+ ,(c2[x(t) ,  t])  (15) 

(O/at)(x(t)f~(t')) = (e~[x(t), t ] i ( t ' ) ) ,  t > t '  (16) 

where cl is a vector, c2 is a square matrix, and ~ is the transpose of the column 
vector x. Other moment equations can be written in a similar way in tensor 
notation; however, we shall not need them in the subsequent analysis. 
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3. F O U N D A T I O N  OF L A N G E V I N  E Q U A T I O N  M E T H O D  

Let x(t), as a function of time, be a particular realization of the Markov 
process. We may formally operate on this function to define a new function 
d(t) = d[t, x(t)] as 

dx(t)/dt = el[x(t), t] + V~d(t) (17) 

where the factor ~ is introduced, anticipating the scaling property of ~(t), 
to simplify the notation. In this equation, el(x, t) is assumed to be a known 
function of x and t. The question of the definition and existence of the 
derivative of the random function x(t) certainly requires some attention at this 
point, but we leave this to mathematicians ~~ and proceed formally. 

The operation in (17) defines a new random process {~(t)} whose statis- 
tical properties can be obtained in principle from the description of the 
original Markov process (x(t)}. The following properties of ~(t) are needed 
for the present discussion: 

(~(t)> = 0 (18a) 

(6(t)~(t')) = O, t > t' (18b) 

(~(t)f~(t)) + (x(t)3(t)) = a/~(cz[x(t), t]) (18c) 

(~(t)g(t')) = (c2[x(t), t]) 8(t - t') (18d) 

The first property is trivially proved by taking the ensemble average of 
(17) in the sense of (8) and using (14). In fact, the particular operator defined 
by (17) is chosen so that (18a) holds. Relation (18b) is obtained by multiplying 
(17) by ~(t'), taking the ensemble average, and comparing the resulting 
equation to (16). It represents the causality condition. The property (18c) is 
proved by first multiplying (17) from the right by ~(t), then multiplying its 
transpose from the left by x(t), taking the ensemble average of the resulting 
equations, and finally adding them up. When the final equation is compared 
to (15), (18c) is obtained. 

The proof of (18d) is somewhat lengthy. Since it plays an important role 
in the Langevin theory, we present its proof in the one-dimensional case. We 
essentially follow a procedure used by Lax (~ and extend it slightly to the 
nonlinear nonstationary case. From (17) 

f f dx(t) 

- ~t-~t" (x(t)x(t')) - ~ (x(t)c1[x(t'), t']) 

~t--, (cl[x(t), t]x(t')) + (cl[x(t), t]cl[x(t'), t']) (19) 
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When t = t '  the first t e rm in (19) is to be interpreted as 

2 t ! (a /at  at ) ( x ( t ) x ( t  ) ) [ ,=r  

Let  us first consider the case t ~ t ' ,  and, to be specific, assume t > t ' .  Then,  
f rom (16) 

(a2/at 8 t ' ) ( x ( t ) x ( t ' ) )  = (a/at ' )(c1[x(t) ,  t ]x( t ' ) )  

This cancels the third te rm in (19). The last t e rm cancels the second when 
t > t '  by virtue of  (12). When  t < t '  one proceeds in a similar way and shows 
tha t  in this case the first t e rm cancels the second, and so on. Hence,  we 
establish (a( t )a( t ' ) )  = 0 for  t r t ' .  In  order  to handle the case t = t ' ,  we 
int roduce the uni t  step funct ion H ( t )  with H ( t )  = 1, t > 0, and  H ( t )  + 
H ( - t )  = 1, and use the identi ty 

( x ( t ) x ( t ' ) )  = H ( t  - t ' ) ( x ( t ) x ( t ' ) )  + H ( t ' -  t ) ( x ( t ) x ( t ' ) )  

One can verify that  

(a2/at a t ' ) [H( t  - t ' ) ( x ( t ) x ( t ' ) ) ]  

= - 8 ' ( t  - t ' ) ( x ( t ) x ( t ) )  - 8(t - t ' ) (cz[x( t ) ,  t ] x ( t ) )  

+ H ( t -  t ' ) (a/Ot ' ) (c l[x( t ) ,  t ]x ( t ' ) )  (20) 

where 8'( t)  is the derivative of  the Di rac  delta funct ion 8(t). In  obtaining (20), 
we used 8 ( t -  t ' ) ( x ( t ) x ( t ' ) ) =  8 ( t -  t ' ) ( x ( t ) x ( t ) )  after per forming  differ- 
ent ia t ion with respect  to t. Similarly, one has 

(a2/at a t ' ) [H( t '  - t ) ( x ( t ) x ( t ' ) ) ]  

= - 8'(t '  - t ) ( x ( t ' ) x ( t ' ) )  - ~(t - t ' ) (x ( t )cz[x( t ) ,  t ] )  

+ H ( t ' -  t ) (a /a t ) (x ( t )cz[x ( t ' ) ,  t ' ] )  (21) 

Adding  (20) and (21) and  using 8'(t - t ' )  = - 8 ' ( t '  - t), we obtain  

82 
at at '  ( x ( t ) x ( t ' ) )  

= ~'(t - t ' ) [ ( x ( t ' ) x ( t ' ) )  - ( x ( t ) x ( t ) ) ]  

- 8(t - t ' ) [ (x ( t )c l [x ( t ) ,  t ] )  + (c l [x ( t ) ,  t ]x ( t ) ) ]  

a t r + H ( t  - t ' ) ~  (cz[x( t ) ,  t ]x ( t ' ) )  + H ( t ' -  t ) - ~  ( x ( t ) c x [ x ( t ) , t  ]) 

(22a) 

The  first te rm in (22a) is simplified by ~11) 

8 ' ( t ) f ( t )  = ' 8 ( t ) f ' (0)  + f (0 )  8 ' ( t)  
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as 

3'(t - t ' ) [ ( x ( t ' ) x ( t ' ) )  - ( x ( t ) x ( t ) ) ]  

= 8 ' ( ' r ) [ ( x ( t ' ) x ( t ' ) )  - ( x ( t '  + z ) x ( t '  + ~'))] 

= 8 ( r ) ( O / O r ) ( x ( t ' +  r ) x ( t ' +  "c)) 

= 8( t  - t ' ) ( d / d t ) ( x ( t ) x ( t ) )  (22b) 

Substituting (22b) into (22a) and the resulting equation into (19), we obtain 
in matrix form 

e ( ~ ( t ) 8 ( t ' ) )  = 8( t  - t ' ) [ ( d / d t ) ( x ( t ) f ~ ( t ) )  - (el[x(t),  t]~(t)) 

- (x(t)~l[x(t), t])] (23) 

If we eliminate d [ ( x ( t ) f ~ ( t ) ) ] / d t  in (23) using (15), we get (18d). It is to be 
noted that these conclusions are valid quite generally for any Markov process. 
Although we have based the derivations in this section on the master equation 
(3), written in terms of intensive variables, the same conclusions could be 
obtained directly, starting from the original master equation (1) for the 
extensive variables. One simply sets e = 1 to obtain the corresponding 
equations in terms of the extensive variables. The scaling property (2) of the 
transition probability has not been used up to this point. It becomes essential 
only when �9 is treated as the smallness parameter and quantities are expanded 
in powers of e as is discussed below. 

When the process is homogeneous in time, the transition probability ~o 
and its moments (4) are independent of time. If in addition the process is 
stationary, then all the one-time moments are constant in time. In particular, 
(15) reduces to 

�9 (c~(x))  = - [ ( e ~ ( x ) ~ )  + (x~ l (x ) ) ]  (24) 

which is the generalized Einstein relation (9~ for a nonlinear process. 
The physical implication of Eq. (17) is that it enables one to interpret the 

fluctuations of the macroscopic variables as the response of a nonlinear time- 
varying system described by a deterministic equation 

d x ( t ) / d t  = el[x(t), t] 

to a random source x/~ o(t). 2 Equation (17), which is the Langevin equation 
for a nonlinear system, provides an alternative and formally equivalent 
description of the original random process {x(t)} in terms of the source 
process {a(t)}. The usefulness of this description lies in the fact that it lends 

2 This interpretation is usually considered as the "Langevin assumption," (5~ but actually 
it is not an assumption until one  specifies d(t). 
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itself well to approximations, especially if only the first two moments and the 
correlation function of the fluctuations are of interest. The system-size 
expansion provides a systematic procedure to implement these approxima- 
tions. 

4. S Y S T E M - S I Z E  E X P A N S I O N  OF THE LANGEVIN  E Q U A T I O N  

To avoid cumbersome notation, we present the derivation of the approxi- 
mate Langevin equations in the one-dimensional case, and start with 

dx/dt = cl(x) + vT, ~ (25) 

where we have suppressed the arguments of x(t) and ~(t) and the explicit 
time dependence of cl(x, t) to compress the formulas. The form of (25) and 
the fact that (~(t)) = 0 suggest the following substitution: 

x = (x )  + v~e ~ (26) 

where (x( t))  is the mean and ~(t) is the fluctuation about the mean, viz: 
(~(t))  = 0. The equations for (x( t))  and ~(t) follow from (25) as 

d(x) /dt  = c~((x)) + �89 z) + -~,a/ZcT((x))(~a) + O(e 2) (27) 

d(/dt = cl ' ((x))(  + �89 - (~2)] 

+ _~,c~((x))[~:3 _ (~3)] + ~(t) + 0 ( ,  3/2) (28) 

where c1', c~ .... denote the partial derivatives of el(x, t) with respect to x. 
Since the lowest power of E is E in (27) and at/2 in (28), we expand (x )  and ~ as 

( x )  = y + aUo + aal2ul (29) 

= ~:o + ~ ~:~ + ,~2 (30) 

where y(t) is the mean, and ~:o(t) is the fluctuation about the mean in the 
lowest order in E, both being independent of ,. Similarly the terms of the next 
order Uo(t) and ~:l(t) also do not depend on ~ explicitly. But u~(t) and ~:2(t) 
must depend on ~ implicitly because they account for the rest of the terms in 
a power series expansion in E ~2. They are of order c ~ in the sense that they do 
not vanish as E --~ 0. Substituting (29) and (30) into (27) and (28), respectively, 
we obtain 

dy/dt = cl(y) (31) 

duo/dt = Uoc((y) + �89 2) (32) 

dul/dt = ulc~'(y) + c~(y)(~o~1) + ~c~(y)(~o3) + 0 ( ,  1/2) (33) 
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for  the evolution of  the mean, and 

d~o/dt = ~oc l ' (y )  + do(t) (34) 

d~l /d t  = ~lc~ ' (y)  + �89162 2 - (~o2)] + d~(t) (35) 

d~a/dt = ~2cx'(y)  + Uo~oC'~(y) + c~(y)[~o~l - (~o~1)] 

+ {~cg(y)[~o s - (~o3)] + d2(t) + O(~ 1/2) (36) 

for  the evolution of  the fluctuations. Equat ions (34)-(36) constitute the 
approximate  set of  Langevin equations 3 with different random sources g0(t), 
dl(t),  and d2(t). The latter are introduced by expanding d(t) in (28) as 

d(t) = do(t) + V~ 61(t) + Ed2(t) (37) 

Here also go(t) and d~(t) are independent  of  e, but  d2(t) depends on E im- 
plicitly. The properties of  these sources are obtained from the relations (18) 

satisfied by d(t), x( t ) ,  and c2(x, t)  by substituting x - - y  + X / ~ 0  + 
e(u0 + ~1) + ~s/a(ut + ~a) and expanding ca(x, t )  about  y. We present the 
results only 4: 

(go(t))  = 0 (38a) 

(do(t)r = O, t > t~ (38b) 

(do(t)r = �89 (38c) 

(do( t )do( t ' ) )  = C a ( y ) 3 ( t -  t ') (38d) 

(d~(t)) = 0 (39a) 

(d~( t )r  = O, t > t '  (39b) 

(d~( t )r  = �89 + �89 (39c) 

(dx( t )d~( t ' ) )  = [c2'(y)uo + �89162 8(t -- t ')  (39d) 

(da(t))  = 0 (40a) 

(da(t)~2(t ' ) )  = O, t > t '  (40b) 

(r~a(t)~2(t)) = �88 + Uo(~o2)c~(y) + (~o2~1)c~(y)  

+ c'~(y)(~z2)] (40c) 

(da(t)da(t ' ) )  = 2(d2(t)r 3(t -- t ')  (40d) 

a The terms proportional to (r 3) are actually not present in (33) and (36) because co(t) 
is Gaussian at all times, as shown later. 

4 Actually in place of (39b) one obtains 
(do(t)~a(t')) + (d2(t)~o(t')) + (d~(t)~(t '))  = O, t > t" 

but it seems that one can split this into (39b) and (42b) without violating any consistency 
relation. However, only this combined form appears in the later derivations. 
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Equations (38)-(40) are the usual properties satisfied by the Langevin sources. 
In addition to these, we also get the following cross-correlations: 

<do(t)d~(t')> + <do(t')dx(t)) = 0 (41a) 

<do(t)d2(t')> + (do(t')dz(t)) = 0 (41b) 

<d~(t)d2(t')> + <dl(t')d2(t)> = [cz'(y)u~ + c~(y)(~o~l> 

+ {c~(y)<~o3>l ~(t - - t ' )  (41c) 

(dl(t)~o(t')) + (do(t)~l(t ' ))  = O, t >>. t '  (42a) 

(Oo(t)~2(t')) + <d2(t)~o(t')) = O, t >/ t ' (42b) 

(dl(t)~2(t')) + <d2(t)~( t ' ) )  = O, t > t' (42c) 

(dl(t)~2(t)) + (d2(t)~(t))  = �89 + c~(y)(~o~) 

+ ~c~(y)<r (42d) 

Equations (41a) and (41b) may be interpreted as denoting that the random 
source d0(t) is uncorrelated with d~(t) and d2(t), although the system-size 
expansion requires only (41a) and (41b) to hold. 

We can obtain other higher order correlations involving the random 
sources and fluctuations. We present some of the relations that are used in 
the applications discussed later. Multiplying the Langevin equation (25) by 
3x2(t) and taking ensemble averages, we obtain 

d(xa>/dt = 3<c~(x)x 2> + 3 ~  (d(t)x2(t)> (43) 

A comparison of this equation to (7) leads to 

(d(t)x~(t)> = ~ (c2(x)x> + �89 (44) 

Substituting x = <x> + ~ f in (44), we get 

<d(t)~z(t)> = <Cz(X)~> + ~ <ca(x)> (45) 

where we have used 

(d(t)~(t)> = �89 

Expanding d(t), ~(t), and x( t )  in powers of ~, we obtain 

<do(t)~o2(t)> = 0 (46) 

2<do(t)~o(t)~l(t)> + <d~(t)~o2(t)> = c2'(y)(~o2> + �89 (47) 

Equation (46) is also a consequence of the Gaussian nature of ~o(t), which 
will be proven later. 
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We now multiply the Langevin equation (25) by 2 x ( t ) x ( t ' ) ,  t > t', and 
take the ensemble averages to obtain 

( ~ / ~ t ) ( x 2 ( t ) x ( t ' ) )  = 2 ( c l [ x ( t ) ] x ( t ) x ( t ' ) ] )  

+ ~ 2 ( d ( t ) x ( t ) x ( t ' ) ) ,  t > t '  (48) 

Comparing this equation to (13) yields 

( d ( t ) x ( t ) x ( t ' ) )  = � 8 9  (c2[x ( t ) ]x ( t ' ) ) ,  t > t '  (49a) 

which can be reduced to 

(d( t ) r162  = �89162 t > t '  (49b) 

with x = (x)  + ~ r Again expanding x, ~, and ~ as in (29), (30), and 
(37), we obtain 

(do(t)~o(t)~o(t ' )~ = 0, t > t '  (50) 

(d~(t)r162 + (do(t)~z( t)r  + (~o( t ) r162  

= �89162162 t > t '  (51) 

The conclusion (50) is also a consequence of the Gaussian nature of Co(t) and 
do(t). Equation (51) will be used in constructing the power spectral density 
correct to order ~2 in Section 6. 

5. LANGEVIN DESCRIPTION IN THE LOWEST ORDER IN 

We summarize the Langevin equations in the lowest order in ~: 

dy/d t  = e l (y ,  t )  (52) 

d~o/dt = ~oC~'(y, t )  + d0(t) (53) 

where d0(t) satisfies Eqs. (38). Equation (52) determines the evolution of the 
mean ( x ( t ) )  = y ( t )  + ,uo(t)  + E312ul(t) + 0 ( ,  2) in the  limit E ~ 0, and is 
referred to by Kubo et  al. C2) as the deterministic equation. In the time- 
invariant system, e l (y ,  t )  [as well as c2(y, t )  in (38)] does not depend on time 
explicitly. In this case the solution of (52) can always be constructed by 
quadrature C1): 

f~ ' 1 (54 )  t -- to = dy '  c l ( y ' )  
o 

where Yo is the initial condition at to. 
The stochastic equation (53) describes the fluctuations in the lowest 
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order, viz., s = ~o(t) + E 1/2 ~l(t) + Es + O(E3/2). Multiplying it by 
2s and using (38c) yields 

de/dr = 2c~'(y, t )a( t )  + c2(y, t) (55) 

where or(t) = (s so that the variance of x is ca(t). In a time-invariant 
system its solution can be obtained as 

fj o(y )  = Cro[c~(y)/c~(yo)] 2 + c~2(y), dy'  c2(y ') /cla(y ') (56) 
o 

where ~o is the initial value of ~r(t) at to. This result was obtained by van 
Kampen (~ and Kubo et al. (2~ As pointed out by the latter authors, a(t) is 
determined by the value of y at that instant in the case of a single variable, 
as demonstrated by (56). 

We can obtain the autocorrelation of x(t), i.e., 

(I)(t, t') = ([x(t) - (x(t))] [x(t') - (x(t '))]) 

= e(~( t )r  = ~(~o(t)~0(t')~ + O(e 2) (57) 

in the lowest order from the Langevin equation (53) by multiplying it by 
~o(t'), taking the ensemble average, and using (38b), as 

~ ( t ,  t')/et = c~'(y, t )~ ( t ,  t ') ,  t > t '  (58) 

whose solution is 

qb(t, t') = exp du cl '[y(u) ,  u] •(t', t ') ,  t > t '  (59) 

In the case of a time-invariant system, (59) can be expressed in a more com- 
pact form by noting that ~(t ' ,  t') = E~(t') and expressing the integral in the 
exponent as 

~t f~t(t) 
du c~'[y(u)] = d In c~(y) 

t" "J l l ( t ' )  

with the help of (52). The result is 

�9 (t, t ')  = , tr( t ' )cl[y(t)]/cl[y(t ' )] ,  t > t '  (60) 

where y ( t )  is given by (54) with t > t '  > to. This result was also obtained by 
Kubo et al. ~2~ by a different method. In the following section we evaluate 
q~(t, t') when the system is in a stable equilibrium state, correct to order E 2. 

We can obtain the deviation of the mean from the deterministic path in 
the lowest order once the variance o(t) is determined from (55), using (32): 

duo/dt = UoC~'(y, t )  + �89 t )  (61) 
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The evolution of the mean is then obtained as 

( x ( t ) )  = y ( t )  + ,Uo(t) + O(~ s/2) (62) 

It is noted that the lowest order description of the fluctuations through the 
Langevin equation enables one to determine the mean correct to order E. 

5.1. Fokker-Planck Equation 

The Langevin equation (53) does not provide the distribution function 
II(~0, t) of ~o. However, if ~o(t) were Gaussian, it would have led to the 
following Fokker-Planck equation<4>: 

~rt(~o, t) ~ 1 ~ n  
at = - c ( ( y ,  t )  voo [~0n] + ~ c~(y, t )  O~o (63) 

But this is identical to the Fokker-Planck equation obtained originally by 
van Kampen <~> in the limit of ~ ---> 0, using Kramers-Moyal expansion, for 
the fluctuations about the deterministic path. Since (x)  = y + ~Uo + O(~ 8/2) 

and x = (x)  + ~/~ (~o + ~ ~1) + 0(~312), ~o reduces to the fluctuations 
about the deterministic path y ( t )  as r ~ 0. We therefore conclude that the 
random source o0(t) and ~o(t) are Gaussian random processes (cf. footnote 3). 
The non-Gaussian nature of the fluctuations about the mean is accounted for 
by the higher order fluctuations ~l(t), ~2(t),..., which satisfy higher order 
Langevin equations (35), (36) .... with their non-Gaussian Langevin sources 
dl( t ) ,  d2(t) ..... 

5.2. Fluctuations About  an Equilibrium State 

The equilibrium state Ye of a time-invariant nonlinear system is deter- 
mined as one of the roots of 

cl(ye)  = 0 (64) 

The behavior of the deterministic path about an equilibrium state is governed 
by 

d3y/d t  = ~'1 3), (65) 
where 

9'1 = c l ' ( y , )  (66) 

If  ~'1 < 0 the equilibrium is stable; otherwise it is unstable. If  ~'1 = 0 but 

~'2 = c'~(y,) # 0 (67a) 

then it is a marginal equilibrium. Kubo et  al. ~2~ refer to the case 9'1 = 0, 
9'2 = 0, and 

7a =- e~'(y~) # 0 (67b) 

as the critical equilibrium. Here we restrict our attention to a stable equi- 
librium. 
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Replacing c~'(y, t) by y~, in (58) we obtain 

qb(t, t ') = ,{exp[yl(t - t')]}oe, t > t '  (68) 

where ere is determined from (55) as 

~,  = c ~ ( y e ) / 2 t y l l  (69) 
The power-spectral density of  the fluctuations follows from (68) as 

G(o~) = ,c2(ye)/(oJ 2 + y~ 2) (70) 

The mean value of  the fluctuations in a stable equilibrium state is obtained 
from (61) with ~o = 0 as 

<X>eq = y ,  + "(r=/21r~l)'~e (7l) 

5.3. Mul t ivar iab le  Descr ipt ion 

The Langevin equations in the lowest order in ~ can easily be written in 
matrix form when the states of the macroscopic system are characterized by a 

set of  variables x(t)  = col[xl(t),..., x~(t)]. Defining x(t)  = (x )  + X/~ To and 
(x )  = y + EUo, we find 

dy/dt = cz[y, t] 

where 

d~o/dt = A[y, t]~o + do(t) 

(72) 

(73) 

A[x, t] - 8el[x, t]/Sx (74) 

The Langevin source now satisfies [cf. Eqs. (18)] 

(d0(t)) = 0 (75a) 

(do(t)~o(t')) = 0, t > t '  (75b) 

(~o(t)~o(t)) + (~o(t)J0(t)) = c2[y(t), t] (75c) 

(do(t)J0(t')) = c2[y(t), t] 8(t - t ') (75d) 

The evolution of the variance, defined by 

cr(t) = (g0(t)~0(t)) 

is obtained from (73) as 

&r(t)/dt  = A[y, t]cr + cr/~[y, t] + c2[y, t] (76) 

The power spectral density of  the fluctuations about a stable equilibrium 
state in a time-invariant system is obtained from (73) and (75) as 

G(r = ,(ico + A ) - l c 2 ( y , ) ( - i o ,  + A)  -~ (77) 
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G(=) = 4(i= + A)-~ + e~(-i= + ~)-~] (78) 

as shown by Lax (~u) in connection with the Langevin method in linear 
systems. Here a~ is the equilibrium variance matrix. 

6. HIGHER ORDER LANGEVIN EQUATIONS 

In this section we use higher order Langevin equations to calculate the 
power spectral density of fluctuations about a stable equilibrium state. For 
simplicity in notation we restrict ourselves to one variable again. The correla- 
tion function in an equilibrium state has the following expansion [cf. (30)]: 

~(~) = ~{<~off)~o(0)> + 4<~&)~1(0)> + <~o(~)~2(0)> 

+ <~2(T)~O(0))] + ~2<~2(~)~2(0))} (79) 

The cross terms proportional to ~ and E az2 in (79) are not included because 
they vanish in equilibrium, viz., 

<~o(r)$1(0)> + <~l(r)~o(0)> = 0 (80a) 

<#1(r + <#20-)~:1(0)> = 0 (SOb) 

The proof of (80a) is presented in the appendix. We do not consider (80b) 
any further because it is of higher order in E than that to which we intend to 
calculate O(r). From (79) we find 

O(o-) = E[<~:o(~-)s%(0)> + r + ,O(E2)] (81) 

where 

qo(~-) = <~1(~-)~(0)> + <~o0")~2(0)> + <~2(~')~o(0)> (82) 

The first term in (81) was already obtained in the previous section [cf. (68)]. 
Here we determine qo(z). The relevant Langevin equations are obtained from 
(34)-(36) with y = Ye, where ye is the stable equilibrium state under considera- 
tion: 

d~o/dt = rl~o + go (83) 

d~/d t  = ~ , ~  + �89 2 - <~o=>1 + dz (84) 

d~2/dt = 7~2 + 72~o(Uo~ + ~ )  + -~Y3~o 8 + ~2 (85) 

where we have set <~o 3) = 0 because to is Gaussian (cf. footnote 3), and 
<~o~) = 0 by virtue of (80a) (cf. the appendix). We multiply (83) by ~(0), 
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(84) by ~1(0), and (85) by fo(O), take ensemble averages, add the resulting 
equations, and obtain for r > 0 

d~(r)/a~ - r l ~ ( ~ )  = ~r2<~o~(~)~1(0)> + Uor~<~o(~)~o(0)> 

+ 72(~o(r)~1(7)~o(0)) + ~6-Ta<~oa(r)r (86) 

where we replaced t by ~-, and used [cf. (39b), (42b), and footnote  4] 

<~o(~)~2(o)> + <~f f )~o(O)>  + <~1(~)~1(o)> = o 

Since ~o(7) is a Gaussian process, the last term in (86) can be evaluated as 

<~oa(r)~o(0)) = 3(~o2)(~o(r)~o(0)) (87) 

where we use 

(glg2gag~) = (g lg2)(gag~)  + <glga)(g2g~) + <gzg~)(gzga) 

for  a Gaussian multivariate.  
The Uoe in (85) is obtained f rom (61) with aoe = 0 as 

Uo~ = - (7~/2yl)<~o 2> (88) 

Substi tut ion of  (88) and (87) in (86) yields 

dg/d7 - r19 = al<~o(r)~o(0)) + 72Z(T), r > 0 (89) 

where we have defined 

al - �89 - (722/71)] (90) 

Z ( r )  = <~o(r)~l(r)~0(0)) + �89 (91) 

By differentiating Z(T) with respect to r and eliminating the derivatives of  ~o 
and ~ using (83) and (84), one gets 

d Z / d .  - 27~Z = �89 - (~o2)(~o(r)~o(0))] 

+ <~o(~)~,(~)~o(O)> + <~o(r)~o(~)~l(o)> 

+ <al(r)~o(r)~:o(0)>, r > 0 (92) 

The first term in (92) is already calculated in (87). The last three terms are 
given by (51), so that  (92) reduces to 

dZ/dr  - 2y lZ  = (72 + �89 r > 0 (93) 

where c2' = c2'(ye). One needs 

Z(0)  = }(~o2~1) (94) 

to solve (93) for  Z(r).  Not ing  that  

d<~oZ(t)~z(t)>/dt = 0 
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in equilibrium, and using (83) and (84), one can show 

Z(0) = -(1/2y2)[y2(~:o2) 2 + c2'(~o 2) + �89 (95) 

by evaluating 

2(do(t)s + (dl(t)~o2(t)) 

from (47) in the derivation. 
Taking the Laplace transform of (89) and (93), and using 

9(0) = (ad-~,x)(~o 2) + ( yd -v l )Z (O)  (96) 

[this is obtained also from (89) with dg(r)/d, = 0 at r = 0], we obtain ~(s). 
Substitution of the latter into (81) yields the Laplace transform of the 
correlation function 

- [ 1 + a 2 - a l - 2 a 8  c 
�9 (s) = ~<~o 2) s - yl 71 s - el 

+ aa - a________~2 �9 ~ ] 
y~ s - 2y--------i + (an + a~) (s ---" yl) 2 (97) 

The power spectral density follows from (97) through 

G(oJ) = 2 Re[U~(ioJ)] 

2~(~o2)[ -) '1 __+ 2d_(aa 7 a2) + 2y12(al + a2) + 2(a2_-- az)] G(~o) 
~ + ~d ~ (~ + rd) ~ ~ ~ + 4y~J 

(98) 

where, in addition to a~ in (90), we have defined 

a2 -= -(YdY~)(Y2 + {ca') (99) 

aa = -(yd2y~)(yz(~o 2) + c2' + cd3(~o2)) (100) 

It is observed in (98) that a new relaxation time 1/2[y1[ emerges when terms 
proportional to ~2 are included in the power spectral density. The second term 
may be combined with the first one within the accuracy of order E 2 as 

[ - y l  + 2,(an - a2) 2(a2 - an)] (101) 
G(oJ) = 2,(~:o =) y,--~ -- ~,/2)z .Tt.--~-- = + ,  4y2 + r 

where 

= - 2 ( a l  + a 2 ) / y ,  (102) 

This indicates that the first relaxation time changes from 1/[y, 1 to 
1/]yll(1 - ~/2)  when higher order terms in E are taken into account. These 

a s  
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general conclusions are in complete agreement with those obtained by van 
Kampen ~8> in a special nonlinear model to be discussed below. 

The third moment of the fluctuations vanishes in the limit of E ~ 0 
because ~o was shown to be Gaussian. The first nonvanishing term in the 

third moment is proportional to v~,  viz., 

(~a) = ((~o + ~ ~1 + ,~2) 2) = 3V"~ (~o2~1) + O(~) (103) 

When the system is in a stable equilibrium state, one can use (94) to calculate 
(~o2~:1) so that 

(~a) = 2x/~EZ(0) + O(,) (104) 

where Z(0) is given by (95). (~a) may be considered a measure of departure 
of the distribution of fluctuations from a Gaussian. 

7. A P P L I C A T I O N S  

As a first application of the general conclusions obtained in the previous 
sections, we consider Alkemade's ~6> diode as a nonlinear model system, 
which was investigated in detail by van Kampen. <7,a) The transition proba- 
bility per unit time of this model is expressed in proper time units as 

oJ(x, r) = 3(r, - 1 )  + e -x 3(r, 1) (105) 

where x is the intensive variable, and is related to the number of excess 
electrons N on one electrode of the diode by 

x = ,[N + �89 (106) 

The smallness parameter ~ is inversely proportional to the capacitance of the 
condenser. The details of this model are summarized by van Kampen <8> and 
will not be reproduced here. The transition probability (105) leads to the 
master equation 

OP(x, t) = P(x  + ~) - P(x) + e-~X-~>P(x - ~) - e-~P(x) 
E Ot 

(107) 

The equilibrium distribution is calculated by van Kampen <8> from (107) as 

P e q ( x ) = P e q ( ; ) e x p [ - l ( x - ; )  z] (108) 

which is Gaussian with a mean E/2. 
Substituting the moments c,~(x) obtained from (105) as 

c,(x) = ( -1 )"  + e -x (109) 
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into (31), (32), and (55), we obtain  the evolution of  the mean  ( x )  = y + 
aUo + O(a 3/2) and the variance a = (~o 2) as 

dy/dt  = - 1 + e ~ (110) 

duo/dr = - u o e  -~ + �89 (111) 

da/dt = - 2 a e  -~ + 2 (112) 

The equil ibrium state is y~ = 0, and is stable. F r o m  (111) and (112) we find 
~ = 1 and u0e = 1/2. The latter implies (x)eq = E/2, which agrees with the 
exact value. The variance of  the equil ibrium is Eae = ~, which also agrees with 
(108). 

The Langevin equations for the fluctuations abou t  the equil ibrium state 
ye = 0 are found f rom (83)-(85) as 

~o + ~o = ~o 

~1 + ~1 = �89 ~ - 1) + ~ 

~ + ~ = �89 + ~o~ - ~ 0  ~ + ~ 

where the propert ies  of  the r a n d o m  sources are given by (38)-(42), and where 
~o = d~o/dt. 

To calculate the power  spectral  density, we find ~'1 = - 1 ,  ~'2 = l, 
7s = - 1 ,  c2' = - 1 ,  and c8 = 0 f rom (66) and (67), so tha t  (90), (99), and 
(100) lead to al = 0, a2 = 1/2, and a3 = 0, respectively. Substi tut ion of  these 
values into (101) yields 

G(co) = 2e (1 - �89 + co2 + (113) 

which is identical to the result obta ined by van Kampen ,  ~8~ by expanding the 
exact  power  spectral  density into a power  series in E and retaining terms to 
order  ~2. I t  is pointed out  and demonst ra ted  by van  K a m p e n  C7~ tha t  there are 
terms in the exact power  spectral  density that  cannot  be obtained by  an 
expansion method  because they are not  analytic in ~. These terms are small, 
o f  infinite order  in E, and not  of  practical  significance. 

The third m o m e n t  of  the distr ibution of  x is given to order ~/~ by (104), 
which yields (~3) = 0 to this order,  since Z(0)  = 0. This result also is 
consistent with the exact equil ibrium distr ibution (108), which is Gaussian.  

A second example  is the Weiss-Is ing model  for  a fe r romagnet  discussed 
by K u b o  et aL ~2~ I t  is characterized by 

co(x, r )  = (1 + x)e  - ~ - ~  b(r, - 1 )  + (1 - x)e  " + ~  3(r, 1) (114) 

where  

x = (N+ - U _ ) / U  



Fluctuations of Macrovariables in Nonlinear Systems 53 

with N+ and N_ the numbers of plus and minus spins, and N --- N+ + N_ .  
In (114),/z and a are proportional  to the external magnetic field and molecular 
field, respectively. The smallness parameter e is E = 2IN. The moments of  
(114) are 

c,(x) = ( -1)" (1  + x)e -u-~x + (1 - x)e u+*x (115) 

The equilibrium states of this system are obtained f rom c~(ye) = 0 as the 
roots of  

ye = tanh(t, + c~ye) (116) 

The interesting feature of this model is that it possesses a critical equilibrium 
ye = 0 when tz = 0 and a = 1, and a marginal equilibrium when a > 1 at a 
critical value of t~, as can easily be verified by evaluating Cz'(ye) = y~, 
c~(y,) = ~2, and c'~(ye) = Y3. Since the implications of  this model, such as 
the anomalous fluctuations, are discussed by Kubo  et al., (2) we shall not 
dwell on it any further. 

A nuclear reactor with feedback provides another interesting nonlinear 
model system for the application of the general theory. I t  is characterized by a 
transition probability 

co(x, r) = x(fl + ~x) 3(r, - 1) + ~ Pi(v)ax 3(r, v - 1) 
Y 

+ ~_, Ps(m)So a(r, m) (117) 
m 

where x is the neutron density,/3 and a are the capture and fission rates per 
neutron, respectively, ~ is the feedback coefficient, So is the external source 
per unit volume, and Pi(v) and P~(m) are the numbers of neutrons per fission 
and per source event. This model is a generalization of the Malthus-Verhulst  
model in population statistics discussed by van Kampen.  (5) We shall present 
the implications of  this model in a future work. 

8. SCAL ING OF CRIT ICAL F L U C T U A T I O N S  

Let Ye be an equilibrium state for which 

cl(y,)  = cz'(y~) . . . . .  c (~-1) = O, cl(k)(y~) # 0 (118) 

and assume that the intensive variable x is measured from y~. Then, 

el(x) = x~k (x )  (119) 

where ~,k(x) is finite at x = 0. The Langevin equation (25) becomes 

dx/dt = xky~(x) + ~ 6(t) (120) 
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where d(t) satisfies [cf. (18)] 

( ~ ( t ) x ( t ) )  = �89 ( ca (x ) )  (121) 

(d ( t )d ( t ' ) )  = (ca (x ) )  3(t -- t ' )  (122) 

We assume that ca(O) # O. We want to scale x and t simultaneously such that 
we obtain a Langevin equation independent of 4. Let 

x = ~z, t = ~%- (123) 

Since 3(~"r) = ~-~ 3(z), (122) leads to a scaling for the random source ~(t) as 

4 0  = ,-"~2q(O 

Substitution of (124) and (123) into (120) yields 

dz/d'r = zky~(,~z) + q('r) 

provided that we choose 

v =- 1 / ( k +  1) 

t~ = - ( k  - 1)/(k + 1) 

With these choices, the scaled random source q(z) satisfies 

(q( 'Oz(~))  = �89  

(q(-r)q(.r')) = ( c a ( , ' z ) )  30- - ~') 

In the limit of ~ -+ O, we find the following scaled equations: 

dz/d~. = z~yk + q('O 

(q(r)z(~'))  = �89 

(q (~)q@' ) )  = c2 3(~" -- z')) 

(124) 

(125) 

(126a) 

(126b) 

(127) 

(128) 

(129) 

(130) 

(131) 

where yk = 7~(0) and c2 = c2(0). For k = 3 (critical equilibrium) we find 
x = d/4z and t = e- l/2r, and for k = 2 (marginal equilibrium) x = d/3z and 
t = e-1/%.. Thus, the relaxation constants for the fluctuations must accumu- 

late to zero as V~ in the critical equilibrium case, and as ella in the marginal 
equilibrium case, because Z(T) is independent of E inasmuch as it satisfies (129). 
This is precisely the scaling rule given by Kubo et  al. C2) based on the Kramers-  
Moyal expansion of the master equation. It is interesting that the Langevin 
description leads to the correct scaling of the relaxation times, even though 
by itself it cannot yield the complete relaxation spectrum. 

Multiplying (129) by 2z(r) and using (130), we find 

d(za( 'r)) /d 'r  = 2yk(z ~+1) + ca (132) 



Fluctuations of Macrovariables in Nonlinear Systems 55 

which leads in equilibrium to 

(z ~ + i )  = _ (c2/2yk) (133) 

Similarly, multiplying (129) by z(0) and using the causality condition 
(q(r)z(0)) for r > 0, we find a similar relation for the correlation function 
r  = ( z ( , ) z (O) ) :  

d f ( z ) / d z  = ~,~(zk(r)z(O)) (134) 

Suppose z(~-) is Gaussian (for k = 1 this is an exact property). Then, for k = 3 
we can obtain an equation for the variance a(r)  = ( z  2) from (132) using 
(z a) = 3(z2) 2, 

da(r)/dT = 6~,3a2(r) + C2 (135) 

Using (z3(~-)z(0)) = 36(z)r for a Gaussian process [cf. (87)] in (134), we 
find 

dr = 3y3r162 (136) 

We assume ~3 < 0, so that a(r) in (135) relaxes to an equilibrium 

~ , - -  (c2/61~,01) ~/~ (137) 

If a0 is the initial value at t = 0, the solution of (135) can be shown to be, in 
real time, 

o(t) = ~(1 + Ke-a")/(1 - Ke  -a') (138) 

where 

K = (a0 - ae)/(eo + ee) (139) 

A = 2 v ~  (6c2ly~]) 1'~ (140) 

Near the equilibrium e(t) behaves as 

o(t) x ae(1 + 2Ke-~'9 (141) 

The relaxation of the correlation function in equilibrium is determined from 
(136) as 

r  = a~e -atl~ (142) 

The relaxation frequency A in (140) approaches zero as ~ in the limit of 
~ 0, as pointed out earlier. The expression (140) is in qualitative agreement 

with Eq. (187) of Kubo et al. ~2~ for the asymptotic evaluation of relaxation 
frequencies. The dependence of A on ]7a], c2, and E is identical in both results, 
which differ from each other only by a numerical factor. However, this 
agreement may be fortuitous on our part because we do not have a real 
justification for assuming the distribution of z to be Gaussian when k > 1. 
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The mean of z when k = 3 follows from (129) as (2) = 7a(zS), which 
indicates that the Gaussian assumption for which (z a) = 0 is consistent with 
the equilibrium condition (2) = 0. In the case of k = 2 corresponding to a 
marginal equilibrium, the Gaussian assumption implies through (132) that 
(z 2) ~ C2T, i.e., the distribution broadens in time without reaching an 
equilibrium. 

9. C O N C L U S I O N S  

In this paper we have investigated the foundation of the Langevin 
equation method of studying fluctuations in a nonlinear Markov process, 
and demonstrated how successive Langevin equations can be obtained by 
expanding the mean, fluctuations, and random source into a series in powers 
of e. To the lowest order in e the Langevin equation is linear with a time- 
varying coefficient [cl '(y) in Eq. (53)] and contains a Gaussian white noise 
source. The power spectral density of this source is also time dependent 
[c2(y) in Eq. (38d)] in general. The implicit time dependence of cl'(y, t) and 
c2(y, t) through y(t) is given by the deterministic equation ~ = c~(y, t). In 
time-invariant systems they do not depend on time explicitly. Thus, the 
deterministic equation and the Langevin equation provide a general descrip- 
tion of the fluctuation even in nonstationary systems, provided c2(y, t) is 
known. 

The description of the fluctuations about equilibrium requires c2(ye) in 
addition to c~(y), which can be obtained from the macroscopic rate equation 
of the system2 Since c2(ye) = 21c~'(y~)l~e, where ~ is the equilibrium value 
of the variance, a knowledge of ~ either from measurement or from thermo- 
dynamic arguments, if the system is in thermal equilibrium, completes the 
description of the fluctuations to the lowest order in 4. 

The calculation of the power spectral density in equilibrium correct to 
order 42 [cf. Eq. (98) or (101)] requires c~(ye), c]'(ye), c2'(y,), and ca(ye) in 
addition to c~'(y~) and cz(y~). Of course, they are easily calculated if the 
transition probability w(x, r) is known. However, the main advantage of the 
Langevin equation approach is that it enables one to determine the power 
spectral density in terms only of the parameters appearing in the macroscopic 
rate equation and the variance, without requiring any other statistical knowl- 
edge. We find that in nonlinear systems this is not possible, as one would 
expect, if terms of higher order in 4 than the first are included in the power 

5 It is not clear whether the macroscopic rate equation of the system can be interpreted as 
the deterministic equation ~ = cl(y), which is the bare transport equation of the system 
in conventional terminology. ~13~ One may argue that the macroscopic equation, which 
is often known only phenomenologically, is already fluctuation-renormalized, (13~ so 
that this identification can only be an approximation. 
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spectral density. However, the additional parameters c2'(ye) and c3(ye) may 
be obtained experimentally by measuring the variance as a function of the 
equilibrium Ye [if it is possible to vary y~ by changing a parameter in cl(y~) 
without changing c2(y)] and the third moment of the fluctuations. The latter 
yields c3(y~) through (104) if c2'(ye) is already determined. 

If the transition probability w(x, r) is known, as is the case in the physical 
models presented in Section 7, one can of course attempt to solve the master 
equation directly as was done by van Kampen ~1) and Kubo e t  al. ~2~ The 
Langevin equation method in such cases may be considered as an alternative 
approach to the study of fluctuations in nonlinear systems. 

A P P E N D I X .  T H E  P R O O F  OF (80a)  

Assume t > t' and multiply (83) by ~l(t'), multiply (84) by ~0(t'), average, 
and add the resulting equations. Using (42a), one finds 

~Q(t, t ')/~t = ~ l a  + ~2(~o2(t)~o(t ' )) ,  t > t'  

where 

Q(t, t ' ) -  (~o(t)~l(t')) + (~o(t')~z(t)) 

Since ~0(t) is Gaussian, the last term on the right-hand side is zero, so that 
we have 

a(t ,  t') --- (exp[~'l(t - t ' )]}a(t ' ,  t'), t > t" 

Now multiply (83) by ~( t ) ,  (84) by ~o(t), and again use (42a) to get 

dO(t, t)/dt = 2y~a(t,  t)  

In equilibrium Q(t, t) = o, so that Q(t, t)  and hence Q(t, t') vanish for all t, 
proving (80a). 
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